摘要

Pile-supported embankments are increasingly being used for highways, railways, storage tanks, etc. over soft soil because of their effectiveness in accelerating construction and minimizing deformation. The stress transfer mechanisms among all of the components in a piled embankment, including the embankment fill, the piles and (or) caps, and the foundation soils, are complicated. In this study, a closed-form solution for one-dimensional loading was obtained taking into consideration the soil arching in the embankment fill, the negative skin friction along the pile shaft, and the settlement of the foundation soil. In the derivations, the piles, the embankment fill, and the foundation soil were assumed to deform one-dimensionally. This study investigated the stress concentration on top of the pile, the axial load and skin friction distributions along the pile, and the settlement of the embankment. Comparisons demonstrate that the results from this solution are in good agreement with those obtained using a finite element method. It is worth pointing out that this solution should be applied to the piles close to the centerline of the embankment and not to those near the toe of the embankment because of the two-dimensional loading condition near the toe.