摘要

A Pt/CNTs catalyst coated with N-doped carbon (xNC-Pt/CNTs) is synthesized by atomic layer deposition (ALD) and applied in methanol electrooxidation reaction. Pt nanoparticles and polyimide (P1) are sequentially deposited on carbon nanotubes (CNTs) by ALD. After annealing at 600 degrees C in H-2 atmosphere, the PI is carbonized to produce porous N-doped carbon. Upon coating with a moderately thick layer of N-doped carbon, the optimized 50NC-Pt/CNTs show higher activity, better long-term stability, and improved CO resistance towards methanol electrooxidation compared with Pt/CNTs and commercial Pt/C (20 wt%). X-ray photoelectron spectroscopy characterization result indicates that the Pt-CO bond is weakened after N-doped carbon coating and CO adsorption on the Pt surface is weakened, leading to superior electrocatalytic performance.