摘要

Helium (He) concentration and He-3/He-4 anomalies in soil gas and spring water are potentially powerful tools for investigating hydrothermal circulation associated with volcanism and could perhaps serve as part of a hazards warning system. However, in operational practice, He and other gases are often sampled only after volcanic unrest is detected by other means. A new passive diffusion sampler suite, intended to be collected after the onset of unrest, has been developed and tested as a relatively low-cost method of determining Heisotope composition pre- and post-unrest. The samplers, each with a distinct equilibration time, passively record He concentration and isotope ratio in springs and soil gas. Once collected and analyzed, the He concentrations in the samplers are used to deconvolve the time history of the He concentration and the He-3/He-4 ratio at the collection site. The current suite consisting of three samplers is sufficient to deconvolve both the magnitude and the timing of a step change in in situ concentration if the suite is collected within 100 h of the change. The effects of temperature and prolonged deployment on the suite's capability of recording He anomalies have also been evaluated. The suite has captured a significant He-3/He-4 soil gas anomaly at Horseshoe Lake near Mammoth Lakes, California. The passive diffusion sampler suite appears to be an accurate and affordable alternative for determining He anomalies associated with volcanic unrest.

  • 出版日期2015-3