Glycogen synthase kinase-3 (GSK3) regulates TNF production and haemocyte phagocytosis in the immune response of Chinese mitten crab Eriocheir sinensis

作者:Li, Xiaowei; Jia, Zhihao; Wang, Weilin; Wang, Lingling*; Liu, Zhaoqun; Yang, Bin; Jia, Yunke; Song, Xiaorui; Yi, Qilin; Qiu, Limei; Song, Linsheng
来源:Developmental and Comparative Immunology, 2017, 73: 144-155.
DOI:10.1016/j.dci.2017.03.022

摘要

Glycogen synthase kinase-3 (GSK3) is a serine/threonine protein kinase firstly identified as a regulator of glycogen synthesis. Recently, it has been proved to be a key regulator of the immune reaction. In the present study, a GSK3 homolog gene (designated as EsGSK3) was cloned from Chinese mitten crab, Eriocheir sinensis. The open reading frame (ORF) was 1824 bp, which encoded a predicted polypeptide of 607 amino acids. There was a conserved Serine/Threonine Kinase domain and a DNA binding domain found in EsGSK3. Phylogenetic analysis showed that EsGSK3 was firstly clustered with GSK3-beta from oriental river prawn Macrobrachium nipponense in the invertebrate branch, while GSK3s from vertebrates formed the other distinct branch. EsGSK3 mRNA transcripts could be detected in all tested tissues of the crab including haepatopancreas, eyestalk, muscle, gonad, haemocytes and haematopoietic tissue with the highest expression level in haepatopancreas. And EsGSK3 protein was mostly detected in the cytoplasm of haemocyte by immunofluorescence analysis. The expression levels of EsGSK3 mRNA increased significantly at 6 h after Aeromonas hydrophila challenge (p < 0.05) in comparison with control group, and then gradually decreased to the initial level at 48 h (p > 0.05). The mRNA expression of lipopolysaccharide-induced tumor necrosis factor (TNF)-alpha factor (EsLITAF) was also induced by A. hydrophila challenge. However, the mRNA expression of EsLITAF and TNF-alpha production was significantly suppressed after EsGSK3 was blocked in vivo with specific inhibitor lithium, while the phagocytosis of crab haemocytes was significantly promoted. These results collectively demonstrated that EsGSK3 could regulate the innate immune responses of E. sinensis by promoting TNF-alpha production and inhibiting haemocyte phagocytosis.