摘要

Current sensing based on the giant magnetoresistance (GMR) effect has been gaining attention due to its outstanding merits. In this paper, hysteretic models of the output characteristics of GMR sensors are presented, and corresponding algorithms are successfully applied to practical GMR sensors to compensate for measurement error due to hysteresis, which is particularly important for high-frequency applications. A 91% decrease in nonlinear error is achieved by the proposed advanced hysteretic model, and the applicable frequency range of the GMR sensor can be extended to around the cutoff frequency of sensor hardware, which is nearly 50 times larger than that based on the conventional linear models. This paper provides optimized solutions for GMR current sensors in different frequency ranges.