A three-season field study on the in-situ remediation of Cd-contaminated paddy soil using lime, two industrial by-products, and a low-Cd-accumulation rice cultivar

作者:He Yan-bing; Huang Dao-you; Zhu Qi-Hong*; Wang Shuai; Liu Shou-Long; He Hai-Bo; Zhu Han-Hua; Xu Chao
来源:Ecotoxicology and Environmental Safety, 2017, 136: 135-141.
DOI:10.1016/j.ecoenv.2016.11.005

摘要

To mitigate the serious problem of Cd-contaminated paddy soil, we investigated the remediation potential of combining in-situ immobilization with a low-Cd-accumulation rice cultivar. A three-season field experiment compared the soil pH, available Cd and absorption of Cd by three rice cultivars with different Cd accumulation abilities grown in Cd-contaminated paddy soil amended with lime (L), slag (S), and bagasse (B) alone or in combination. The three amendments applied alone and in combination significantly increased soil pH, reduced available Cd and absorption of Cd by rice with no effect on grain yield. Among these, the LS and LSB treatments reduced the brown rice Cd content by 38.3-69.1% and 58.3-70.9%, respectively, during the three seasons. Combined with planting of a low-Cd-accumulation rice cultivar (Xiang Zaoxian 32) resulted in a Cd content in brown rice that met the contaminant limit (<= 0.2 mg kg(-1)). However, the grain yield of the low-Cd-accumulation rice cultivar was approximately 30% lower than the other two rice cultivars. Applying LS or LSB as amendments combined with planting a low-Cd-accumulation rice cultivar is recommended for the remediation of Cd-contaminated paddy soil. The selection and breeding of low-Cd-accumulation rice cultivars with high grain production requires further research.

  • 出版日期2017-2
  • 单位中国科学院