摘要

One of the most important assumptions in production scheduling is that the machines are permanently available without any breakdown. In the real world of scheduling, machines can be made unavailable due to various reasons such as preventive maintenance and unpredicted breakdown. In this paper, we explore flowshop configuration under the assumption of condition-based maintenance to minimize expected makespan. Furthermore, we consider a condition-based maintenance (CBM) strategy which could be used in most industrial settings. The proposed algorithm is designed for non-resumable flowshop state where the processing of jobs after preventive maintenance is restarted from the beginning. We propose a hybrid algorithm based on genetic algorithm and simulated annealing. Additionally, we conduct an extensive parameter calibration with the utilization of Taguchi method and select the optimal levels of the algorithm's performance influential factors. The preliminary results indicate that the proposed method provides significantly better results compared with other high performing algorithms in the literature.

  • 出版日期2011-3

全文