摘要

We have developed a micro-Raman spectrometer system for use to differentiate tumor lesions from normal skin using an in vivo animal model. A study of 494 Raman spectra from 24 mice revealed different spectral patterns at different depths and between normal and tumor-bearing skin sites. A peak at 899 cm(-1) (possibly from proline or fatty acids) and one with higher intensity in the 1325-1330 cm(-1) range (assigned to nucleic acids) were correlated with the presence of tumors, which can potentially be used as biomarkers for skin cancer detection. Spectral diagnosis performed on the murine tumor model achieved a diagnostic sensitivity of 95.8% and specificity of 93.8%. These results encourage us to develop further the use of confocal Raman spectroscopy as a clinical tool for noninvasive human skin biochemical analysis, particularly in relation to skin cancer.