摘要

Mechanical strength and its long-term stability of bioceramic scaffolds is still a problem to treat the osteonecrosis of the femoral head. Considering the long-term stability of diopside (DIO) ceramic but poor mechanical strength, we developed the DIO-based porous bioceramic composites via dilute magnesium substituted wollastonite reinforcing and three-dimensional (3D) printing. The experimental results showed that the secondary phase (i.e. 10% magnesium substituting calcium silicate; CSM10) could readily improve the sintering property of the bioceramic composites (DIO/CSM10-x, x?=?0-30) with increasing the CSM10 content from 0% to 30%, and the presence of the CSM10 also improved the biomimetic apatite mineralization ability in the pore struts of the scaffolds. Furthermore, the flexible strength (12.5-30?MPa) and compressive strength (14-37?MPa) of the 3D printed porous bioceramics remarkably increased with increasing CSM10 content, and the compressive strength of DIO/CSM10-30 showed a limited decay (from 37?MPa to 29?MPa) in the Tris buffer solution for a long time stage (8 weeks). These findings suggest that the new CSM10-reinforced diopside porous constructs possess excellent mechanical properties and can potentially be used to the clinic, especially for the treatment of osteonecrosis of the femoral head work as a bioceramic rod.