摘要

The system of linearized shallow water equations is formulated in this paper on any rotating and smooth surface M in terms of differential geometry. The system decouples into two separate equations: a scalar one for the height deviation and a vector one for the velocity field. For low and high frequencies these equations yield asymptotic equations whose solutions are the generalizations of the Poincare and Rossby waves to smooth surface. The application of these equations to the beta-plane yields both new and previously known equations for the height deviation and for the velocity components. The application of the equations to the rotating spherical Earth shows that the meridional amplitudes of Poincare and Rossby waves are both described by the prolate angular spheroidal wave functions. The asymptotic and the power series expansions of the eigenvalues of these functions yield new approximations for the dispersion relations of these waves on a sphere. The new dispersion relations are very accurate in the physically relevant range of the single nondimensional model parameter - the square of the nondimensional gravity waves' phase speed. The invariant formulation can also be applied to other surfaces that are of geophysical interest such as an oblate ellipsoid of revolution.

  • 出版日期2011-1