摘要

Organoclays are effective sorbents for removal of organic contaminants from water, but their regeneration capacity limits their practical use as a biotechnological process for bioremediation. Here, the sorption of p-nitrophenol (PNP) to crystal violet (CV)-modified montmorillonite and its biodegradation by the bacterium Arthrobacter sp. 4H beta were studied in a batch aqueous system. The degree of PNP sorption was dependent on the degree of CV modification (loaded at 80 % or 100 % of the clay's cation-exchange capacity-CVM80 and CVM100, respectively). CV sorption to the clay reduced its toxicity to bacteria. PNP at an initial concentration of 0.72 mM was degraded at rates of 65 % and 42 % in CVM80 and CVM100 suspensions, respectively. Both free and CV-clay-adsorbed PNP concentrations were reduced by the bacteria at rates proportional to the degree of CV modification. Three successive cycles of PNP reloading-degradation in the organoclay suspension demonstrated the potential of this matrix's regeneration and reuse toward maximal removal efficiency of organic pollutants.

  • 出版日期2014-2

全文