High-mobility group box 1 activates caspase-1 and promotes hepatocellular carcinoma invasiveness and metastases

作者:Yan Wei; Chang Ying; Liang Xiaoyan; Cardinal Jon S; Huang Hai; Thorne Stephen H; Monga Satdarshan P S; Geller David A; Lotze Michael T; Tsung Allan*
来源:Hepatology, 2012, 55(6): 1863-1875.
DOI:10.1002/hep.25572

摘要

Hypoxia is often found in solid tumors and is associated with tumor progression and poor clinical outcomes. The exact mechanisms related to hypoxia-induced invasion and metastasis remain unclear. We elucidated the mechanism by which the nuclear-damageassociated molecular pattern molecule, high-mobility group box 1 (HMGB1), released under hypoxic stress, can induce an inflammatory response to promote invasion and metastasis in hepatocellular carcinoma (HCC) cells. Caspase-1 activation was found to occur in hypoxic HCC cells in a process that was dependent on the extracellular release of HMGB1 and subsequent activation of both Toll-like receptor 4 (TLR4)- and receptor for advanced glycation endproducts (RAGE)-signaling pathways. Downstream from hypoxia-induced caspase-1 activation, cleavage and release of proinflammatory cytokines interleukin (IL)-1 beta and -18 occurred. We further demonstrate that overexpression of HMGB1 or treatment with recombinant HMGB1 enhanced the invasiveness of HCC cells, whereas stable knockdown of HMGB1 remarkably reduced HCC invasion. Moreover, in a murine model of HCC pulmonary metastasis, stable knockdown of HMGB1 suppressed HCC invasion and metastasis. Conclusion: These results suggest that in hypoxic HCC cells, HMGB1 activates TLR4- and RAGE-signaling pathways to induce caspase-1 activation with the subsequent production of multiple inflammatory mediators, which, in turn, promote cancer invasion and metastasis. (HEPATOLOGY 2012;55:18661875)

  • 出版日期2012-6