摘要

An important vision of next generation mobile system is to provide global internet access. The Space-Terrestrial Integrated Network(STIN) has been proposed and intensively studied to tackle this challenge. Due to the severe attenuation of radio signals in water, the STIN cannot be directly applied in underwater scenarios. In this paper we envision a framework of integrated radio-acoustic network arming at high-efficient data transmission in underwater scenarios, where acoustic signal is for underwater communication and radio signal is for surface and air communications. Since radio links have much higher data transmission rate and lower delay, in the integrated radio-acoustic network, the acoustic links easily become congested, at the same time the radio links are not fully utilized. We therefore propose that the integrated radio-acoustic network should be properly designed to minimize the hop count of acoustic links, as well as the signaling overhead in the acoustic subnetwork. We then present a novel network framework and the relative technologies to help moving the signaling overhead to the radio subnetwork.