摘要

In this (first) paper we attempt to generalize the notion of tensor connectivity, subsequently studying how this property is affected in different tensorial operations. We show that the often implied corollary of the linked diagram theorem, namely individual size-extensivity of arbitrary connected closed diagrams, can be violated in Coulomb systems. In particular, the assumption of the existence of localized Hartree-Fock orbitals is generally incompatible with the individual size-extensivity of connected closed diagrams when the interaction tensor is generated by the true two-body part of the electronic Hamiltonian. Thus, in general, size-extensivity of a many-body method may originate in specific cancellations of super-extensive quantities, breaking the convenient one-to-one correspondence between the connectivity of arbitrary many-body equations and the size-extensivity of the expectation values evaluated by those equations (for example, when certain diagrams are discarded from the method). Nevertheless, assuming that many-body equations are evaluated for a stable many-particle system, it is possible to introduce a workaround, called the epsilon-approximation, which restores the individual size-extensivity of an arbitrary connected closed diagram, without qualitatively affecting the asymptotic behavior of the computed expectation values. No assumptions concerning the periodicity of the system and its strict electrical neutrality are made.

  • 出版日期2012