摘要

The beta(2)-adrenergic receptor (beta(2)AR) undergoes agonist-mediated endocytosis via clathrin-coated pits by a process dependent on both arrestins and dynamin. Internalization of some G protein-coupled receptors, however, is independent of arrestins and/or dynamin and through other membrane microdomains such as caveolae or lipid rafts. The human beta(1)AR is less susceptible to agonist-mediated internalization than the beta(2)-subtype, and its endocytic route, which is unknown, may be different. We have found that (i) co-expression of arrestin-2 or -3 enhanced the internalization of both subtypes whereas co-expression of dominant-negative mutants of arrestin-2 or dynamin impaired their internalization, as did inhibitors of clathrin-mediated endocytosis. (ii) Agonist stimulation increased the phosphorylation of beta(2)AR but not beta(1)AR. (iii) In response to agonist, each subtype redistributed from the cell surface to a distinct population of cytoplasmic vesicles; those containing beta(1)AR were smaller and closer to the plasma membrane whereas those containing beta(2)AR were larger and more perinuclear. (iv) When subcellular fractions from agonist-treated cells were separated by sucrose density gradient centrifugation, all of the internalized beta(2)AR appeared in the lighter endosomal-containing fractions whereas some of the internalized beta(1)AR remained in the denser plasma membrane-containing fractions. (v) Both subtypes recycled with similar kinetics back to the cell surface upon removal of agonist; however, recycling of beta(2)AR but not beta(1)AR was inhibited by monensin. Based on these results, we propose that the internalization of beta(1)AR is both arrestin- and dynamin-dependent and follows the same clathrin-mediated endocytic pathway as beta(2)AR. But during or after endocytosis, beta(1)AR and beta(2)AR are sorted into different endosomal compartments.

  • 出版日期2004-2-15