摘要

A new and efficient analytical method was developed and validated for the analysis of organophosphorus flame retardants (OPFRs) in indoor dust samples. This method involves an extraction step by ultrasonication and vortex, followed by extract clean-up with Florisil solid-phase extraction cartridges and analysis of the purified extracts by gas chromatography-mass spectrometry (GC-MS). Method recoveries ranged between 76 and 127%. except for volatile OPFRs, such as triethyl phosphate (TEP) and tri-(n-propyl) phosphate (TnPP), which were partially lost during evaporation steps. The between day precision on spiked dust samples was <14% for individual OPFRs, except for TEP, tri-iso-butyl phosphate (TiBP) and tri (2-butoxyethyl) phosphate (TBEP). Method limit of quantifications (LOQ) ranged between 0.02 mu g/g (TnPP and tris(1-chloro-2-propyl phosphate (TCPP)) and 0.50 mu g/g (TiBP). The method was further applied for the analysis of indoor dust samples taken from Flemish homes and stores. TiBP, TBEP and TCPP were most abundant OPFR with median concentrations of 2.99, 2.03 and 1.38 mu g/g in house dust and of 1.04, 3.61, and 2.94 mu g/g in store dust, respectively. The concentration of all OPFRs was at least 20 to 30 times higher compared to polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs). Estimated exposure to OPFRs from dust ingestion ranged for individual OPFRs between <1 and 50 ng/kg body weight for adults and toddlers, respectively. The estimated body burdens were 1000 to 100 times below reference dose (RID) values, except for the scenario with high dust ingestion and high concentrations of TBEP in toddlers, where intake was only 5 times below RID. Exposure of non-working and working adults to OPFRs appeared to be similar, but in specific work environments, exposure to some OPFRs (e.g. TDCPP) was increased by a factor >5.

  • 出版日期2011-2