摘要

Accurate prediction of the evolution of particle size distribution is critical to determining the dynamic flow structure of a disperse phase system. A population balance equation (PBE), a non-linear hyperbolic equation of the number density function, is usually employed to describe the micro-behavior (aggregation, breakage, growth, etc.) of a disperse phase and its effect on particle size distribution. Numerical solution is the only choice in most cases. In this paper, three different numerical methods (direct discretization methods, Monte Carlo methods, and moment methods) for the solution of a PBE are evaluated with regard to their ease of implementation, computational load and numerical accuracy. Special attention is paid to the relatively new and superior moment methods including quadrature method of moments (QMOM), direct quadrature method of moments (DQMOM), modified quadrature method of moments (M-QMOM), adaptive direct quadrature method of moments (ADQMOM), fixed pivot quadrature method of moments (FPQMOM), moving particle ensemble method (MPEM) and local fixed pivot quadrature method of moments (LFPQMOM). The prospects of these methods are discussed in the final section, based on their individual merits and current state of development of the field.