摘要

In this paper, we present a suite of asynchronous distributed optimization algorithms for wide-area oscillation estimation in power systems using alternating direction method of multipliers (ADMMs). We first pose the estimation problem as a real-time, iterative, and distributed consensus problem. Thereafter, we consider a probabilistic traffic model for modeling delays in any typical wide-area communication network, and study how the delays enter the process of information exchange between distributed phasor data concentrators that are employed to execute this consensus algorithm in a coordinated fashion. Finally, we propose four different strategies by which the convergence rate and accuracy of this consensus algorithm can be made immune to the asynchrony resulting from the network traffic. We carry out extensive simulations to show possible numerical instabilities and sensitivities of the ADMM convergence on our proposed strategies. Our results exhibit a broad view of how the convergence of any distributed estimation algorithm in a generic cyber-physical system depends strongly on the uncertainties of the underlying communication models.

  • 出版日期2016-7