摘要

A thorough kinetic analysis of the rate theory for stochastic self-regulating gene networks is presented. The chemical master equation kinetic model in terms of a coupled birth-death process is deconstructed into several simpler kinetic modules. We formulate and improve upon the rate theory of self-regulating genes in terms of perturbation theory. We propose a simple five-state scheme as a faithful caricature that elucidates the full kinetics including the "resonance phenomenon" discovered by Walczak et al. [Proc. Natl. Acad. Sci. U. S. A. 102, 18926 (2005)]. The same analysis can be readily applied to other biochemical networks such as phosphorylation signaling with fluctuating kinase activity. Generalization of the present approach can be included in multiple time-scale numerical computations for large biochemical networks.

  • 出版日期2011-2-14