摘要

Imaging the brain with high integrity is of great importance to neuroscience and related applications. X-ray computed tomography (CT) and magnetic resonance imaging (MRI) are two clinically used modalities for deep penetration brain imaging. However, their spatial resolution is quite limited. Two-photon fluorescence microscopic (2PFM) imaging with its femtosecond (fs) excitation wavelength in the traditional near-infrared (NIR) region (700-1000 nm) is able to realize deep-tissue and high-resolution brain imaging. However, it requires craniotomy and cranial window or skull-thinning techniques due to photon scattering of the excitation light. Herein, based on a type of aggregation-induced emission luminogen (AIEgen) DCDPP-2TPA with a large three-photon absorption (3PA) cross section at 1550 nm and deep-red emission, we realized through-skull three-photon fluorescence microscopic (3PFM) imaging of mouse cerebral vasculature without craniotomy and skull-thinning. Reduced photon scattering of a 1550 nm fs excitation laser allowed it to effectively penetrate the skull and tightly focus onto DCDPP-2TPA nanoparticles (NPs) in the cerebral vasculature, generating bright three-photon fluorescence (3PF) signals. In vivo 3PF images of the cerebral vasculature at various vertical depths were obtained, and a vivid 3D reconstruction of the vascular architecture beneath the skull was built. As deep as 300 gm beneath the skull, small blood vessels of 2.4 mu m could still be recognized.