Near-Surface Wind Observation Impact on Forecasts: Temporal Propagation of the Analysis Increment

作者:Bedard Joel; Laroche Stephane; Gauthier Pierre
来源:Monthly Weather Review, 2017, 145(4): 1549-1564.
DOI:10.1175/MWR-D-16-0310.1

摘要

This study examines the assimilation of near-surface wind observations over land to improve wind now-casting and short-term tropospheric forecasts. A new geostatistical operator based on geophysical model output statistics (GMOS) is compared with a bilinear interpolation scheme (Bilin). The multivariate impact on forecasts and the temporal evolution of the analysis increments produced are examined as well as the influence of background error covariances on different components of the prediction system. Results show that Bilin significantly degrades surface and upper-air fields when assimilating only wind data from 4942 SYNOP stations. GMOS on the other hand produces smaller increments that are in better agreement with the model state. It leads to better short-term near-surface wind forecasts and does not deteriorate the upper-air forecasts. The information persists longer in the system with GMOS, although the local improvements do not propagate beyond 6-h lead time. Initial model tendencies indicate that the mass field is not significantly altered when using static error covariances and the boundary layer parameterizations damp the poorly balanced increment locally. Conversely, most of the analysis increment is propagated when using flow-dependent error statistics. It results in better balanced wind and mass fields and provides a more persistent impact on the forecasts. Forecast accuracy results from observing system experiments (assimilating SYNOP winds with all observations used operationally) are generally neutral. Nevertheless, forecasts and analyses from GMOS are more self-consistent than those from both Bilin and a control experiment (not assimilating near-surface winds over land) and the information from the observations persists up to 12-h lead time.

  • 出版日期2017-4