摘要

As a new service-oriented smart manufacturing paradigm, cloud manufacturing (CMfg) aims at fully sharing and circulation of manufacturing capabilities towards socialization, in which composite CMfg service optimal selection (CCSOS) involves selecting appropriate services to be combined as a composite complex service to fulfill a customer need or a business requirement. Such composition is one of the most difficult combination optimization problems with NP-hard complexity. For such an NP-hard CCSOS problem, this study proposes a new approach, called multi-population parallel self-adaptive differential artificial bee colony (MPsaDABC) algorithm. The proposed algorithm adopts multiple parallel subpopulations, each of which evolves according to different mutation strategies borrowed from the differential evolution (DE) to generate perturbed food sources for foraging bees, and the control parameters of each mutation strategy are adapted independently. Moreover, the size of each subpopulation is dynamically adjusted based on the information derived from the search process. Different scales of the CCSOS problems are conducted to validate the effectiveness of the proposed algorithm, and the experimental results show that the proposed algorithm has superior performance over other hybrid and single population algorithms, especially for complex CCSOS problems.