NEUROCARDIAC-CARDIORESPIRATORY INTERACTION OF HEART-BRAIN MAILUNS SYNCHRONY AT DEEP ZEN MEDITATION

作者:Lo Pei Chen; Tian Wu Jue Miao
来源:Biomedical Engineering - Applications, Basis and Communications, 2016, 28(6): 1650039.
DOI:10.4015/S1016237216500393

摘要

<jats:p> Innovatively new behaviors of heart rate variability caused by special heart-transition process were observed in the long-term, well-experienced Zen practitioners while practicing the heart-to-heart imprint sealing (HHIS) Zen meditation. HHIS Zen practice involves specific neurocardiac-cardiorespiratory interaction while on the way of realizing the heart-dominant, detached brain. Results of analyzing the electrocardiogram and respiratory signals of 10 experienced practitioners reveal several distinctive characteristics: (1) remarkably linear correlation between standard deviation of the normal R-to-R intervals, SDNN, and total power in very-low-frequency (VLF, 0.0033–0.04[Formula: see text]Hz) band of power spectrum of the heart-rate sequence, (2) time-varying VLF power dominating over the low-frequency and high-frequency power in heart rate variability (HRV) variations, (3) intermittent transition into slowly, deeply abdominal respiration inducing a boost of heart rates, (4) heart-rate baseline slowly fluctuating at 0.005–0.0067[Formula: see text]Hz, about 1.5–2 cycles in 5-min period, and (5) remarkable respiratory sinus arrhythmia (RSA) synchrony between heart rate and respiration rhythm. This paper proposes a rational scientific hypothesis for the neurocardiac-cardiorespiratory mechanism. The unique scheme of HHIS Zen meditation involves the spiritual-qi concentration and refinement for pinpointing into the particular energy centers, mailuns. Ignition by a subtle, deepest abdominal respiration, electrical impulses rapidly transmit from solar plexus to branchial plexuses to activate unique heart-transition process. Simultaneously, another branch streams upward the spinal cord to cervical plexus and brainstem that effectively harmonizes neurocardiac interactions. To investigate the underlying behaviors, time-domain and frequency-domain HRV based on continuous wavelet transform were employed. </jats:p>

  • 出版日期2016-12

全文