摘要

The objective of this paper is to develop a noncontact, noninvasive system for detecting and monitoring subcutaneous infection occurring at the tissue and osseointegrated prosthesis interface. It is known that the local pH of tissue can change due to infection. Therefore, the sensing system integrates two parts, namely, pH-sensitive thin films that can be coated onto prosthesis surfaces prior to them being implanted and an electrical capacitance tomography (ECT) algorithm that can reconstruct the spatial permittivity distribution of a region of space in a noncontact fashion. First, a thin film pH sensor was fabricated by spray coating, and tests confirmed that the film exhibited changes in its permittivity due to pH. Second, the ECT forward and inverse problems were implemented. Third, an aluminum rod was employed as a representative phantom of an osseointegrated prosthesis and then spray coated with the pH sensor. Finally, the film-coated phantom was immersed in different pH buffers, dried, and subjected to ECT interrogation and spatial permittivity reconstruction. The results validated that ECT was able to detect and localize permittivity variations correlated to pH changes.

  • 出版日期2017-11