摘要

A semi-analytical solution was presented for groundwater flow due to pumping in a leaky sloping fault-zone aquifer surrounded by permeable matrices. The flow in the aquifer was descried by a three-dimensional flow equation, and the flow in the upper and lower matrix blocks are described by a one-dimensional flow equation. A first-order free-water surface equation at the outcrop of the fault-zone aquifer was used to describe the water table condition. The Laplace domain solution was derived using Laplace transform and finite Fourier transform techniques and the semi-analytical solutions in the real time domain were evaluated using the numerical inverse Laplace transform method. The solution was in excellent agreement with Theis solution combined with superposition principle as well as the solution of Huang et al. (2014). It was found that the drawdown increases as the sloping angle of the aquifer increases in early time and the impact of the angle is insignificant after pumping for a long time. The free-water surface boundary as additional source recharges the fault aquifer and significantly affect the drawdown at later time. The surrounding permeable matrices have a strong influence on drawdown but this influence can be neglected when the ratio of the specific storage and the ratio of the hydraulic conductivity of the matrices to those of the fault aquifer are less than 0.001.