摘要

A suitable arbitrarily complex boundary condition treatment using the lattice Boltzmann sheme is developed in the fluid-solid coupling field. The new method is based on a half-way bounce back model. A virtual boundary layer is built with the fluid-solid coupling, and all the properties used on the virtual boundary are inter-/extrapolated from the surrounding nodes combining with the finite difference method. The improved method ensures that the particles bounce the same location as that of the macro-speed sampling point, and considers the offset effect on the accuracy of the calculated results when the actual physical borders and the grid lines do not coincide. And its scope is extended to any static or mobile, straight or curved boundary. The processing power of the method under the classic conditions, such as the Poiseuille flow, the flow around a circular cylinder, the Couette flow, etc. is studied. Results prove that the theoretically calculated values agree well with the experimental data. Compared with the results published in the literature, this method has a greater precision when the actual physical borders and gridlines do not coincide.