High-Purity Nickel Prepared by Electron Beam Melting: Purification Mechanism

作者:Zhang Tao*; Shang Zaiyan; Chen Ming; He Jinjiang; Lv Baoguo; Wang Xingquan; Xiong Xiaodong
来源:Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 2014, 45(1): 164-174.
DOI:10.1007/s11663-013-0007-6

摘要

A bulk cylindrical high-purity nickel ingot, with purity of more than 99.999 pct (5N) in mass, was obtained from the raw nickel with 99.95 pct (3N5) initial purity by virtue of double electron beam melting (EBM). A chemical analysis was performed by using glow discharge mass spectrometry (GDMS) analysis for all elements in the periodic table except carbon, nitrogen, and oxygen, which were tested by the high-performance combustion and fusion method. The major impurities B, Na, Al, Si, P, S, Ca, Ti, Cr, Fe, Cu, Co, Zn, As, Ag, Sb, and Pb showed an excellent removal effect with removal efficiency of more than 85 pct following the double EBMs. Li, Mg, Cl, K, V, Mn, Ga, Ge, Cd, Se, In, Sn, Tl, Au, and Pt were below the detection limit. No significant change in concentration was found for the refractory elements W, Mo, Ta, Nb, and Ir. Be, F, Sc, Se, Br, Rb, Sr, Zr, Y, Ru, Rh, Pd, Te, I, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Re, Os, Hg, Bi, Th, and U were not detectable following the purification as compared to the raw nickel. Gaseous impurities, C, N, O, especially for N, was removed sufficiently. Theoretical calculations for removal efficiency of impurity Fe based on the calculated vapor pressure, activity coefficient, and melt temperature were in good agreement with measured results, and the purification mechanism was ascribed to the evaporation of major impurities and subsequently evacuation by repetitive EBM.

  • 出版日期2014-2