摘要

Background: Modeling the dynamics of intracellular regulation networks by systems of ordinary differential equations has become a standard method in systems biology, and it has been shown that the behavior of these networks is often tightly connected to the network topology. We have recently introduced the circuit-breaking algorithm, a method that uses the network topology to construct a one-dimensional circuit-characteristic of the system. It was shown that this characteristic can be used for an efficient calculation of the system%26apos;s fixed points. %26lt;br%26gt;Results: Here we extend previous work and show several connections between the circuit-characteristic and the stability of fixed points. In particular, we derive a sufficient condition on the characteristic for a fixed point to be unstable for certain graph structures and demonstrate that the characteristic does not contain the information to decide whether a fixed point is asymptotically stable. All statements are illustrated on biological network models. %26lt;br%26gt;Conclusions: Single feedback circuits and their role for complex dynamic behavior of biological networks have extensively been investigated, but a transfer of most of these concepts to more complex topologies is difficult. In this context, our algorithm is a powerful new approach for the analysis of regulation networks that goes beyond single isolated feedback circuits.

  • 出版日期2012-6-6