摘要

In this study, we report nanometer displacement measurement of an individual multiwalled nanotube (MWNT) in liquid, based on the high accuracy localization of individual fluorescent nanoparticles. In order to visualize a MWNT cantilever in liquid, a fluorescent polystyrene nanoparticle with an amine conjugate was selectively attached at the end of a nanotube by noncovalent hydrogen bonding between amine and carboxylic groups. Physical absorption of ethylenediamine gas vapor onto an as-fabricated MWNT cantilever renders the nanotube hydrophilic, enabling manipulation of the MWNT cantilever in liquid without bending or breaking. A fluorescent nanoparticle was localized by a two-dimensional Gaussian fit for the fluorescence intensity of the particle. During the manipulation of the nanotube cantilever in liquid, the displacement was determined by the positional change of the localized nanoparticle. The measurement technique was evaluated by measuring the displacement of a MWNT cantilever subjected to controlled manipulation such as a single line scan, step and stair response. The positional accuracy of the measurement was experimentally found to be 7 nm. The fluorescence measurement of a hydrophilic MWNT cantilever can be further used in biological applications such as biochemical sensors and single molecule force spectroscopy.

  • 出版日期2010-8