摘要

Introduction: Organ/tissue replacement therapy is inherently difficult for application in the tissue engineering field due to immune rejection that limits the long-term efficacy of implanted devices. As the application of tissue engineering in the biomedical field has steadily expanded, stem cells have emerged as a viable option to promote the immune acceptance of implantable devices and to expedite alleviation of the pathological conditions. With various novel scaffolds being introduced, nanofibers which have a three-dimensional architecture can be considered as an efficient carrier for stem cells. Areas covered: This article reviews the novel tissue engineering processes involved with nanofiber and stem cells. Topics such as the fabrication of nanofiber via electrospinning techniques, the interaction between nanofiber scaffold and specific cell and advanced techniques to enhance the stability of stem cells are delineated in detail. In addition, cardiovascular applications of nanofiber scaffolds loaded with stem cells are examined from a clinical perspective. Expert opinion: Electrospun nanofibers have been intensively explored as a tool for the architecture control of cardiovascular tissue engineering due to their tunable physicochemical properties. The modification of nanofiber with biological cues, which provide rapid differentiation of stem cells into a specific lineage and protect stem cells under the harsh conditions (i.e., hypoxia), will significantly enhance therapeutic efficacies of transplanted cells. A combination of nanofiber carriers and stem cell therapy for tissue regeneration seems to pose enormous potential for the treatment of cardiac diseases including atherosclerosis and myocardial infarction.

  • 出版日期2013-11