ANTISENSE 2'-O-ALKYL OLIGORIBONUCLEOTIDES ARE EFFICIENT INHIBITORS OF REVERSE TRANSCRIPTION

作者:BOIZIAU C; LARROUY B; SPROAT BS; TOULME JJ
来源:Nucleic Acids Research, 1995, 23(1): 64-71.
DOI:10.1093/nar/23.1.64

摘要

Reverse transcription is one step of the retroviral development which can be inhibited by antisense oligonucleotides complementary to the RNA template. 2'-O-Alkyl oligoribonucleotides are of interest due to their nuclease resistance, and to the high stability of the hybrids they form with RNA. Oligonucleotides, either fully or partly modified with 2'-O-alkyl residues, were targeted to an RNA template to prevent cDNA synthesis by the Avian Myeloblastosis Virus reverse transcriptase (AMV RT). Fully-modified 2'-O-allyl 17mers were able to specifically block reverse transcription via an RNase H-independent mechanism, with efficiencies comparable to those observed with phosphodiester (PO) and phosphorothioate oligonucleotides. Sandwich 2'-O-alkyl/PO/2'-O-alkyl oligonucleotides, supposed to combine the properties of 2'-O-alkyl modifications (physical blocking of the RT) to those of the PO window (RNase H-mediated cleavage of the RNA) were quasi-stoichiometric inhibitors when adjacent to the primer, but remained without any effect when non-adjacent. They were not able to compete with the polymerase and inhibited reverse transcription only through RNase H-mediated cleavage of the target.

  • 出版日期1995-1-11

全文