摘要

High-frequency oscillatory ventilation (HFOV) relies on low tidal volumes cycled at supraphysiological rates, producing fundamentally different mechanisms for gas transport and exchange compared with conventional mechanical ventilation. Despite the appeal of using low tidal volumes to mitigate the risks of ventilator-induced lung injury, HFOV has not improved mortality for most clinical indications. This may be due to nonuniform and frequency-dependent distribution of flow throughout the lung. The goal of this study was to compare parenchymal strain heterogeneity during eucapnic HFOV when using oscillatory waveforms that consisted of either a single discrete frequency or two simultaneous frequencies. We utilized a three-dimensional, anatomically structured canine lung model for simulating frequency-dependent ventilation distribution. Gas transport was simulated via direct alveolar ventilation, advective mixing at bifurcations, turbulent and oscillatory dispersion, and molecular diffusion. Volume amplitudes at each oscillatory frequency were iteratively optimized to attain eucapnia. Ventilation using single-frequency HFOV demonstrated increasing heterogeneity of acinar flow and CO2 elimination with frequency for frequencies greater than the resonant frequency. For certain pairs of frequencies, a linear combination of the two corresponding ventilation distributions yielded reduced acinar strain heterogeneity compared with either frequency alone. Our model demonstrates that superposition of two simultaneous oscillatory frequencies can achieve more uniform ventilation distribution, and therefore lessen the potential for ventilator-induced lung injury, compared with traditional single-frequency HFOV.
NEW & NOTEWORTHY In this study, we simulated oscillatory ventilation with multiple simultaneous frequencies using a computational lung model that includes distributed flow and gas transport. A mechanism of benefit was identified by which ventilation with two simultaneous frequencies results in reduced acinar strain heterogeneity compared with either frequency alone. This finding suggests the possibility of tuning the spectral content of ventilator waveforms according to patient-specific mechanical heterogeneity.

  • 出版日期2018-3