摘要

为了提高脑部肿瘤的磁共振成像(MRI)在肿瘤分割方面的精度和分割效率,提出了自适应阈值蚁群模糊聚类算法(TSAGPnFCMS)。针对传统的模糊c均值聚类(FCMS)算法对噪声敏感,以及MRI图像中存在属性不同的样本点,在聚类过程中,将不同属性样本点的相关系数作为权重融入到欧氏距离的计算,提高聚类精度;针对蚁群算法容易陷入局部最优,提出一种自适应阈值蚁群算法,提高算法的全局搜索能力,将自适应阈值蚁群算法与改进的模糊聚类算法相结合,提高系统的分割精度和抗噪声性能,使得最终的分割效果达到最优。通过轮廓系数、目标函数收敛结果以及迭代时间进行实验仿真对比,表明改进算法的有效性,可见算法为颅内肿瘤图像的分割提供了可靠的技术手段。