Description of collective effects in computer models of water

作者:Voloshin V P*; Malenkov G G; Naberukhin Yu I
来源:Journal of Structural Chemistry, 2007, 48(6): 1066-1072.
DOI:10.1007/s10947-007-0172-z

摘要

The dynamics of a system containing 3456 water molecules in a cubic cell with periodic boundary conditions at 297 K was simulated. The time dependence of distances between oxygen atoms was examined for many pairs of molecules. These distances often oscillate around a certain average value over long periods of time (10 ps and longer). These average values can be about 2.8 angstrom (hydrogen bond) or much larger, up to 12-13 angstrom and more. This suggests that big groups of molecules are involved in a concerted motion. Lists of hydrogen bonds in 50 configurations divided by an interval of about 1 ps are compared. The average lifetime of a hydrogen bond is about 7 ps. The network of hydrogen bonds is colored according to their lifetimes for one of the configurations. The bonds that live longer than 7 ps form an infinite cluster. The bonds that live longer than 8 ps join to form a great number of finite clusters including several hundreds of nodes (molecules). These clusters contain few closed cycles. Even the bonds that live longer than 20 ps are united into clusters each containing two or three nodes (molecules). The self-diffusion coefficient for molecules involved in long-lived bonds is likely to be slightly smaller than that for molecules which do not participate in these bonds.

  • 出版日期2007-11