摘要

OBJECTIVES: To determine the effect of graft placement and orientation on flow rates through a partially obstructed coronary artery. %26lt;br%26gt;METHODS: A numerical, parametric study of blood flow in the human coronary artery was conducted using computational fluid dynamics simulation. A cylindrical approximation of the coronary artery with varying degrees of stenosis, with and without a bypass graft, was modelled to determine trends in volumetric flow rates. Steady and transient simulations were conducted for geometric variations of percentage of blockage, length and shape of stenosis, graft position relative to the coronary blockage and graft orientation. Accurate simulations were performed using a non-Newtonian fluid model and pressure-driven viscous flow. %26lt;br%26gt;RESULTS: Simulations demonstrate, as expected, that total outlet flow rates of grafted arteries are consistently improved for upstream stenosis varying between 0 and 90% blockage. Grafts angled towards the artery provided increased total outflow. However, flow rates in the coronary artery upstream of the graft are substantially reduced in comparison with the non-grafted configuration due to competing flows. For some configurations (reduced blockage, graft placed close to long grafts), flow rates in the graft are below that of the flow rate through the stenosis. In general, a graft angled more towards the artery increased flow rates upstream of the graft. %26lt;br%26gt;CONCLUSIONS: Placement and orientation of a graft may adversely affect upstream flow, with the degree of effect dependent on geometric factors of downstream position and graft angle.

  • 出版日期2014-7