Toll-like Receptor 9 Can be Activated by Endogenous Mitochondrial DNA to Induce Podocyte Apoptosis

作者:Bao, Wenduona; Xia, Hong; Liang, Yaojun; Ye, Yuting; Lu, Yuqiu; Xu, Xiaodong; Duan, Aiping; He, Jing; Chen, Zhaohong; Wu, Yan; Wang, Xia; Zheng, Chunxia; Liu, Zhihong; Shi, Shaolin*
来源:Scientific Reports, 2016, 6(1): 22579.
DOI:10.1038/srep22579

摘要

Toll-like receptor 9 (TLR9) senses bacterial DNA characteristic of unmethylated CpG motifs to induce innate immune response. TLR9 is de novo expressed in podocytes of some patients with glomerular diseases, but its role in podocyte injury remains undetermined. Since TLR9 activates p38 MAPK and NFkB that are known to mediate podocyte apoptosis, we hypothesized thatTLR9 induces podocyte apoptosis in glomerular diseases. We treated immortalized podocytes with puromycin aminonucleosides (PAN) and observed podocyte apoptosis, accompanied by TLR9 upregulation. Prevention ofTLR9 upregulation by siRNA significantly attenuated NF KB p65 or p38 activity and apoptosis, demonstrating thatTLR9 mediates podocyte apoptosis. We next showed that endogenous mitochondrial DNA (mtDNA), whose CpG motifs are also unmethylated, is the ligand for TLR9, because PAN induced mtDNA accumulation in endolysosomes where TLR9 is localized, overexpression of endolysosomal DNase 2 attenuated PAN-induced p38 or p65 activity and podocyte apoptosis, and DNase 2 silencing was sufficient to activate p38 or p65 and induce apoptosis. In PAN-treated rats, TLR9 was upregulated in the podocytes, accompanied by increase of apoptosis markers. Thus, de novo expressed TLR9 may utilize endogenous mtDNA as the ligand to facilitate podocyte apoptosis, a novel mechanism underlying podocyte injury in glomerular diseases.