摘要

A comprehensive micromechanical model for the analysis of thin smart composite grid-reinforced shells with an embedded periodic grid of generally orthotropic cylindrical reinforcements that may also exhibit piezoelectric properties is developed and applied to examples of practical importance. Details on derivation of a general homogenized smart shell model are provided in Part I of this work. The present paper solves the obtained unit cell problems and develops expressions for the effective elastic, piezoelectric and thermal expansion coefficients for the grid reinforced smart composite shell. Thus obtained effective coefficients are universal in nature and can be used to study a wide variety of boundary value problems. The applicability of the model is illustrated by means of several examples including cylindrical reinforced smart composite shells, and multi-layer smart shells. The derived expressions allow tailoring the effective properties of a smart grid-reinforced shell to meet the requirements of a particular application by changing certain geometric or physical parameters.

  • 出版日期2010-8