An improved method for retrieving nighttime aerosol optical thickness from the VIIRS Day/Night Band

作者:McHardy T M; Zhang J*; Reid J S; Miller S D; Hyer E J; Kuehn R E
来源:Atmospheric Measurement Techniques, 2015, 8(11): 4773-4783.
DOI:10.5194/amt-8-4773-2015

摘要

Using Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) data, a method, dubbed the "variance method", is developed for retrieving nighttime aerosol optical thickness (tau) values through the examination of the dispersion of radiance values above an artificial light source. Based on the improvement of a previous algorithm, this updated method derives a semi-quantitative indicator of nighttime tau using artificial light sources. Nighttime tau retrievals from the newly developed method are inter-compared with an interpolated value from late afternoon and early morning ground observations from four AErosol RObotic NETwork (AERONET) sites as well as column-integrated tau from one High Spectral Resolution Li-dar (HSRL) site at Huntsville, AL, during the NASA Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign, providing full diel coverage. Sensitivity studies are performed to examine the effects of lunar illumination on VIIRS tau retrievals made via the variance method, revealing that lunar contamination may have a smaller impact than previously thought; however, the small sample size of this study limits the conclusiveness thus far. VIIRS tau retrievals yield a coefficient of determination (r(2)) of 0.60 and a root-mean-squared error (RMSE) of 0.18 when compared against straddling daytime-averaged AERONET tau values. Preliminary results suggest that artificial light sources can be used for estimating regional and global nighttime aerosol distributions in the future.

  • 出版日期2015