摘要

Heat transfer phenomena in turbochargers have been a subject of investigation due to their importance for the correct determination of compressor real work when modelling. The commonly stated condition of adiabaticity for turbochargers during normal operation of an engine has been revaluated because important deviations from adiabatic behaviour have been stated in many studies in this issue especially when the turbocharger is running at low rotational speeds/loads. The deviations mentioned do not permit us to assess properly the turbine and compressor efficiencies since the pure aerodynamic effects cannot be separated from the non-desired heat transfer due to the presence of both phenomena during turbocharger operation. The correction of the aforesaid facts is necessary to properly feed engine models with reliable information and in this way increase the quality of the results in any modelling process. The present work proposes a thermal characterization methodology successfully applied in a turbocharger for a passenger car which is based on the physics of the turbocharger. Its application helps to understand the thermal behaviour of the turbocharger, and the results obtained constitute vital information for future modelling efforts which involve the use of the information obtained from the proposed methodology. The conductance values obtained from the proposed methodology have been applied to correct a procedure for measuring the mechanical efficiency of the tested turbocharger.

  • 出版日期2010-3