摘要

This article presents the HP422-MoCHA: optimized Motion Compensation hardware architecture for the High 4:2:2 profile of H.264/AVC video coding standard. The proposed design focuses on real-time decoding for HDTV 1080p (1,920 x 1,080 pixels) at 30 fps. It supports multiple sample bit-width (8, 9, or 10 bits) and multiple chroma sub-sampling formats (4:0:0, 4:2:0, and 4:2:2) to provide enhanced video quality experience. The architecture includes an optimized sample interpolator that processes luma and chroma samples in two parallel datapaths and features quarter sample accuracy, bi-prediction and weighted prediction. HP422-MoCHA also includes a hardwired Motion Vector Predictor, supporting temporal and spatial direct predictions. A novel memory hierarchy implemented as a 3-D Cache reduces the frame memory access, providing, on average, 62% of bandwidth and 80% of clock cycles reduction. The design was implemented in a Xilinx Virtex-II PRO FPGA, and also in an ASIC with a TSMC 0.18 mu m standard cells technology. The ASIC implementation occupies 102 K equivalent gates and 56.5 KB of on-chip SRAM in a 3.8 x 3.4 mm(2) area. It presents a power consumption of 130 mW. Both implementations reach a maximum operation frequency of similar to 100 MHz, being able to motion compensate 37 bi-predictive frames or 69 predictive fps. The minimum required frequency to ensure the real-time decoding for HD1080p at 30 fps is 82 MHz. Since HP422-MoCHA is the first Motion Compensation architecture for the High 4:2:2 profile found in the literature, a Main profile MoCHA was used for comparison purposes, showing the highest throughput among all presented works. However, the HP422-MoCHA architecture also reaches the highest throughput when compared with the other published Main profile MC solutions, even considering the significantly higher complexity of the High 4:2:2 profile.

  • 出版日期2013-3