摘要

Adsorption and desorption kinetics at the solid/solution interface have been monitored using attenuated total reflection infrared (ATR-IR) spectroscopy to evaluate this approach as an alternative to equilibrium (adsorption isotherm) measurements of adsorption affinity. The adsorption and desorption kinetics of oxalate ion to anatase TiO2 have been measured by using aqueous 1 x 10(-4) mol L-1 oxalic acid solutions at pH 4 and thin films of TiO2 particles deposited on an internal reflection prism. The adsorption kinetics were obtained from the absorbance versus time behavior of major adsorbed oxalate infrared absorptions with flow of oxalic acid solution followed by flow of solution not containing oxalic acid to measure the desorption kinetics. Regression analysis of the desorption data based on Langmuir kinetics yielded three distinct pseudo-first-order rate constants with desorption half-lives of 300, 14, and 2 min, indicating the presence of three adsorbed oxalate species of different adsorption affinities. The most slowly desorbing and most strongly bound adsorbate species is likely to be a bidentate chelating oxalate ion from comparisons with the IR spectra of coordination compounds involving oxalate ligands. Regression analysis of the adsorption data was unable to yield the corresponding pseudo-first-order adsorption constants and prevented the calculation from kinetics data of Langmuir adsorption affinity constants. Measurement of adsorption and desorption kinetics by ATR-IR spectroscopy is expected to provide a relatively rapid means of assessing the presence of species of different adsorption affinities in systems in which their spectra are not well differentiated.

  • 出版日期2009-3-17