An approach to the assessment of risk from chronic radiation to populations of European lobster, Homarus gammarus (L.)

作者:Vives i Batlle Jordi; Wilson R C; Watts S J; McDonald P; Jones S R; Vives Lynch S M; Craze A
来源:Radiation and Environmental Biophysics, 2010, 49(1): 67-85.
DOI:10.1007/s00411-009-0251-y

摘要

The basic principles underlying a four-discrete age group, logistic, growth model for the European lobster Homarus gammarus are presented and discussed at proof-of-concept level. The model considers reproduction, removal by predation, natural death, fishing, radiation and migration. Non-stochastic effects of chronic low linear energy transfer (LET) radiation are modelled with emphasis on (99)Tc, using three endpoints: repairable radiation damage, impairment of reproductive ability and, at higher dose rates, mortality. An allometric approach for the calculation of LD(50/30) as a function of the mass of each life stage is used in model calibration. The model predicts that at a dose rate of 1 Gy day(-1), lobster population reproduction and survival become severely compromised, leading eventually to population extinction. At 0.01 Gy day(-1), the survival rate of an isolated population is reduced by 10%, mainly through loss of fecundity, comparable to natural migration losses. Fishing is the main ecological stress and only dose rates in the range 0.03-0.1 Gy day(-1) can achieve discernible effects above it. On the balance of radiation and other ecological stresses, a benchmark value of 0.01 Gy day(-1) is proposed for the protection of lobster populations. This value appears consistent with available information on radiation effects in wildlife.

  • 出版日期2010-3