摘要

A nonlinear shallow-water model combined with the effect of anode gas bubbles was derived for the melt flows and interface instability in aluminum reduction cells. Both the electromagnetic forces and the drag forces between the bath and gas bubbles, as the main driven forces for the melt flows, were taken into account in this model. A comparative numerical study was carried out using both the model considering the bubble and the model without considering the bubble. The results show the effect of the bubble cannot be neglected in a fluid dynamics analysis for the aluminum reduction cell. The bath flow, induced by the motion of bubbles, presents a series of small eddies rather than large eddies as the metal flow pattern shows. The horizontal drag forces between the bath and the bubbles in the bath layer enlarge the deformation of the metal-bath interface, to some extent, but have a positive influence on stabilizing the metal-bath interface perturbations.

  • 出版日期2013-11