摘要

The fragmentation mechanisms of the naphthalene molecular ion to [M-C4H2](+center dot), [M-C2H2](+center dot), [M-H-2](+center dot), and [M-H-center dot](+) were obtained at the UB3LYP/6-311+ G(3df,2p)//UB3LYP/6-31G(d) level of theory and were subsequently used to calculate the microcanonical rate constants, k(E)'s, for all the steps by the Rice-Ramsperger-Kassel-Marcus formalism. The pre-equilibrium and steady state approximations were applied on different regions of the potential energy profiles to obtain the fragmentation k(E)'s and calculate the relative abundances of the ions as a function of energy. These results reproduce acceptably well the imaging photoelectron-photoion coincidence spectra of naphthalene, in the photon-energy range 14.0-18.8 eV that was previously reported by our group. Prior to dissociation, the molecular ion rapidly equilibrates with a set of isomers that includes the Z- and E-phenylvinylacetylene (PVA) radical cations. The naphthalene ion is the predominant isomer below 10 eV internal energy, with the other isomers remaining at steady state concentrations. Later on, new steady-state intermediates are formed, such as the azulene and 1-phenyl-butatriene radical cations. The naphthalene ion does not eject an H atom directly but eliminates an H-2 molecule in a two-step fragmentation. H-center dot loss occurs instead from the 1-phenyl-butatriene ion. The PVA ions initiate the ejection of diacetylene (C4H2) to yield the benzene radical cation. Acetylene elimination yields the pentalene cation at low energies (where it can account for 45.9%-100.0% of the rate constant of this channel), in a three-step mechanism starting from the azulene ion. However, above 7.6 eV, the major [M-C2H2](+center dot) structure is the phenylacetylene cation.

  • 出版日期2015-9-14