摘要

Following the development of the scanning tunneling microscope (STM), the technique has become a very powerful and important tool for the field of surface science, since it provides direct real-space imaging of single atoms, molecules and adsorbate structures on surfaces. From a fundamental perspective, the STM has changed many basic conceptions about surfaces, and paved the way for a markedly better understanding of atomic-scale phenomena on surfaces, in particular in elucidating the importance of local bonding geometries, defects and resolving non-periodic structures and complex co-existing phases. The so-called "surface science approach", where a complex system is reduced to its basic components and studied under well-controlled conditions, has been used successfully in combination with STM to study various fundamental phenomena relevant to the properties of surfaces in technological applications such as heterogeneous catalysis, tribology, sensors or medical implants. In this tribute edition to Gerhard Ertl, we highlight a few examples from the STM group at the University of Aarhus, where STM studies have revealed the unique role of surface defects for the stability and dispersion of Au nanoclusters on TiO(2), the nature of the catalytically active edge sites on MoS(2) nanoclusters and the catalytic properties of Au/Ni or Ag/Ni surfaces. Finally, we briefly review how reaction between complex organic molecules can be used to device new methods for self-organisation of molecular surface structures joined by comparatively strong covalent bonds.

  • 出版日期2009-6-1