摘要

Numerical investigations have been performed in order to simulate the transient behaviour of copper electrolysis in a rectangular cell with vertical electrodes in a galvanostatic regime where the kinetics of the electrodes is controlled by charge-transfer. The transient behaviour observed for a binary electrolyte reproduces the temporal evolution of the concentration distribution measured in recent experimental work. Horizontal magnetic fields that vary linearly between the electrodes create Lorentz forces that either enhance or attenuate natural convection. The different time scales of natural convection and convection driven by the Lorentz force lead to interesting transient effects. The simulations performed for the case of an attenuating Lorentz force explain the dynamics of vertical inhomogeneities of the concentration boundary layer during the initial stages of electrolysis that were previously observed experimentally.

  • 出版日期2012-7