摘要

Cellulose fiber surface was modified with silk sericin (or simply, sericin). Sericin fixation on cellulose was confirmed by environmental scanning electron microscopy (ESEM) and Fourier transform infrared spectrophotometry-attenuated total reflectance (FTIR-ATR). Sericin content in finished samples was estimated by dyeing treated fabrics with an acid dye, Supranol Bordeaux B, and determining K/S and L values of the dyed fabrics. The treated fabrics were tested for free formaldehyde content, crease recovery, tensile strength, electrical resistance, water retention, and biocidal activity. From ESEM and FTIR-ATR results, it was found that sericin coated onto cotton surfaces as a film. Increasing sericin content in the finishing solution increased the amount of coated sericin, and a greater depth of color in dyed samples and reduced free formaldehyde content in treated samples were observed. The sericin con-tent in samples was found to have a negligible influence on tensile strength and crease recovery angle. With increasing sericin content, electrical resistivity of the samples dramatically decreased and water retention increased, indicating that sericin-treated fabrics may be comfortable to wear because of its maintenance of moisture balance with respect to human skin. Because cotton textile coated with sericin exhibited low formaldehyde content and no biocidal activity against Klebsiella pneumoniae and Staphylococcus aureus, the fabric may reduce skin irritation and disturbance of physiological skin flora arising from textile contact.

  • 出版日期2005-5-15