摘要

The research program discussed in this paper included both experimental and computational investigations of structural capacity effects on bridge columns by simulating observed column damage. For the experimental research, scaled models of a column were constructed and fractured using stone-splitting wedges. This method was intended to create the worst-case scenario based on the observed damage in the field: cracks propagating through the core of the columns and effectively cleaving each column into four pieces. The finite-element software ATENA, which models cracking in reinforced concrete, was used for the computational modeling and a parametric study. The computer model was correlated to the experimental results and then used to predict capacities for a variety of deterioration levels. This parametric study was used to determine the critical crack width, which would reduce the capacity of the column to its design load. This predicted critical crack width gives the bridge owner another tool for the evaluation of concrete degradation. This paper focuses on the computational portion of the research. As such, this paper presents a method to mimic existing damage in a finite-element model that the practicing engineer could use in a structural assessment of existing conditions.

  • 出版日期2014-12