摘要

This paper addresses the control problem of air-breathing hypersonic vehicles subject to input nonlinearities, aerodynamic uncertainties and flexible modes. An adaptive backstepping controller and a dynamic inverse controller are developed for the altitude subsystem and the velocity subsystem, respectively, where the former eliminates the problem of "explosion of terms" inherent in backstepping control. Moreover, a modified smooth inverse of the dead-zone is proposed to compensate for the dead-zone effects and reduce the computational burden. Based on this smooth inverse, an input nonlinear pre compensator is designed to handle input saturation and dead-zone nonlinearities, which leads to a simpler control design for the altitude subsystem subject to these two input nonlinearities. It is proved that the proposed controllers can guarantee that all closed-loop signals are bounded and the tracking errors converge to an arbitrarily small residual set. Simulation results are carried out to demonstrate the effectiveness of the proposed control scheme.