Moist versus Dry Baroclinic Instability in a Simplified Two-Layer Atmospheric Model with Condensation and Latent Heat Release

作者:Lambaerts Julien; Lapeyre Guillaume; Zeitlin Vladimir*
来源:Journal of the Atmospheric Sciences, 2012, 69(4): 1405-1426.
DOI:10.1175/JAS-D-11-0205.1

摘要

The authors undertake a detailed analysis of the influence of water vapor condensation and latent heat release upon the evolution of the baroclinic instability. The framework consists in a two-layer rotating shallow-water model with moisture coupled to dynamics through mass exchange between the layers due to condensation/precipitation. The model gives all known in literature models of this kind as specific limits. It is fully nonlinear and ageostrophic. The reference state is a baroclinic Bickley jet. The authors first study its "dry" linear instability and then use the most unstable mode to initialize high-resolution numerical simulations of the life cycle of the instability in nonprecipitating (moisture being a passive tracer) and precipitating cases. A new-generation well-balanced finite-volume scheme is used in these simulations.
The evolution in the nonprecipitating case follows the standard cyclonic wave-breaking life cycle of the baroclinic instability, which is reproduced with a high fidelity. In the precipitating case, the onset of condensation significantly increases the growth rate of the baroclinic instability at the initial stages due to production of available potential energy by the latent heat release. Condensation occurs in frontal regions and wraps up around the cyclone, which is consistent with the moist cyclogenesis theory and observations. Condensation induces a clear-cut cyclone anticyclone asymmetry. The authors explain the underlying mechanism and show how it modifies the equilibration of the flow at the late stages of the saturation of the instability. In spite of significant differences in the evolution, only weak differences in various norms of the perturbations remain between precipitating and nonprecipitating cases at the end of the saturation process.

  • 出版日期2012-4